https://www.journalofhospitalinfection.com/article/S0195-6701(20)30046-3/fulltext

Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents

Günter Kampf¹¹

Günter Kampf

Correspondence information about the author Günter Kampf

Email the author Günter Kampf

Daniel Todt²

Stephanie Pfaender²

Eike Steinmann²

PlumX Metrics

DOI: https://doi.org/10.1016/j.jhin.2020.01.022

±Article Info

- Abstract
- Full Text
- References

Article Outline

- I. Introduction
- II. Method
- III. Results
 - A. Persistence of coronavirus on inanimate surfaces
 - B. Inactivation of coronaviruses by biocidal agents in suspension tests
 - C. <u>Inactivation of coronaviruses by biocidal agents in carrier tests</u>
- IV. <u>Discussion</u>
- V. Conclusions
- VI. Declaration of Competing Interest
- VII. References

Jump to Section

Summary

Currently, the emergence of a novel human coronavirus, temporary named 2019-nCoV, has become a global health concern causing severe respiratory tract infections in humans. Human-to-human transmissions have been described with incubation times between 2-10 days, facilitating its spread via droplets, contaminated hands or surfaces. We therefore reviewed the literature on all available information about the persistence of human and veterinary coronaviruses on inanimate surfaces as well as inactivation strategies with biocidal agents used for chemical disinfection, e.g. in healthcare facilities. The analysis of 22 studies reveals that human coronaviruses such as Severe Acute Respiratory Syndrome (SARS) coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV) can persist on inanimate surfaces like metal, glass or plastic for up to 9 days, but can be efficiently inactivated by surface disinfection procedures with 62-71% ethanol, 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Other biocidal agents such as 0.05-0.2% benzalkonium chloride or 0.02% chlorhexidine digluconate are less effective. As no specific therapies are available for 2019-nCoV, early containment and prevention of further spread will be crucial to stop the ongoing outbreak and to control this novel infectious thread.

Keywords:

https://www.journalofhospitalinfection.com/article/S0195-6701(20)30046-3/fulltext coronavirus, persistence, inanimate surfaces, chemical inactivation, biocidal agents, disinfection

Jump to Section	•

Introduction

A novel coronavirus (2019-nCoV) has recently emerged from China with a total of 6065 laboratory-confirmed cases of pneumonia (as of January 30, 2020) [1]. Together with Severe Acute Respiratory Syndrome (SARS) coronavirus and Middle East Respiratory Syndrome (MERS) coronavirus [2], this is the third highly pathogenic human coronavirus that has emerged in the last two decades. Person-to-person transmission has been described both in hospital and family settings [3]. It is therefore of utmost importance to prevent any further spread in the public and healthcare settings. Transmission of coronaviruses from contaminated dry surfaces has been postulated including self-inoculation of mucous membranes of the nose, eyes or mouth [4, 5], emphasizing the importance of a detailed understanding of coronavirus persistence on inanimate surfaces [6]. Various types of biocidal agents such as hydrogen peroxide, alcohols, sodium hypochlorite or benzalkonium chloride are used worldwide for disinfection, mainly in healthcare settings [7]. The aim of the review was therefore to summarize all available data on the persistence of all coronaviruses including emerging SARS-CoV and MERS-CoV as well as veterinary coronaviruses such as transmissible gastroenteritis virus (TGEV), mouse hepatitis virus (MHV) and canine coronavirus (CCV) on different types of inanimate surfaces and on the efficacy of commonly used biocidal agents used in surface disinfectants against coronaviruses.

Jump to Section	~
1 1	

Method

A Medline search has been done on January 28, 2020. The following terms were used, always in combination with "coronavirus", "TGEV", "MHV" and "CCV": survival surface (88/10/25/0 hits), persistence surface (47/1/32/0 hits), persistence hand (8/0/3/0 hits), survival hand (22/0/3/1 hits), survival skin (8/0/0/1 hits), persistence skin (1/0/0/1 hit), virucidal (23/3/3/1 hits), chemical inactivation (33/0/6/1), suspension test (18/0/0/0 hits) and carrier test (17/4/0/0). Publications were included and results were extracted given they provided original data on coronaviruses on persistence (surfaces, materials) and inactivation by biocidal agents used for disinfection (suspension tests, carrier tests, fumigation studies). Data with commercial products based on various different types of biocidal agents were excluded. Reviews were not included, but screened for any information within the scope of this review.

Jump to Section	▼
Results	
Jump to Section	▼

Persistence of coronavirus on inanimate surfaces

Most data were described with the endemic human coronavirus strain (HCoV-) 229E. On different types of materials it can remain infectious for from 2 hours up to 9 days. A higher temperature such as 30°C or 40°C reduced the duration of persistence of highly pathogenic MERS-CoV, TGEV and MHV. However, at 4°C persistence of TGEV and MHV can be increased to ≥ 28 days. Few comparative data obtained with SARS-CoV

https://www.journalofhospitalinfection.com/article/S0195-6701(20)30046-3/fulltext

indicate that persistence was longer with higher inocula (<u>Table 1</u>). In addition it was shown at room temperature that HCoV-229E persists better at 50% compared to 30% relative humidity [8].

		44.00		
Table 1 Dergistance	of coronaviruese	on different type	a of inonimate	aurtococ
Table 1Persistence	of colonaviluses	on uniterent types	s of manininau	s surraces.

Table 1Persistence of coronaviruses on different types of inanimate surfaces.								
Type of surface	Virus	Strain/isolate	Inoculum (viral titer)	Temperature	Persistence	Reference		
Steel	MERS- CoV	Isolate HCoV- EMC/2012	105	20°C 30°C	48 h 8 – 24 h	[21]		
	TGEV	Unknown	106	4°C 20°C 40°C	$\ge 28 \text{ d}$ 3 - 28 d 4 - 96 h	[22]		
	MHV	Unknown	10^{c}	4°C 20°C 40°C	$\geq 28 \text{ d}$ 4 - 28 d 4 - 96 h	[22]		
	HCoV	Strain 229E	10^{3}	21°C	5 d	[23]		
Aluminium	HCoV	Strains 229E and OC43	5 x 10 ³	21°C	2 – 8 h	[24]		
Metal	SARS- CoV	Strain P9	105	RT	5 d	[<u>25</u>]		
Wood	SARS- CoV	Strain P9	105	RT	4 d	[<u>25</u>]		
Paper	SARS- CoV	Strain P9	10⁵	RT	4 – 5 d	[<u>25</u>]		
	SARS- CoV	Strain GVU6109	10° 10° 104	RT	24 h 3 h < 5 min	[26]		
Glass	SARS- CoV	Strain P9	105	RT	4 d	[25]		
	HCoV	Strain 229E	103	21°C	5 d	[<u>23</u>]		
Plastic	SARS- CoV	Strain HKU39849	105	22°-25°C	≤ 5 d	[27]		
	MERS- CoV	Isolate HCoV- EMC/2012	105	20°C 30°C	48 h 8 – 24 h	[21]		
	SARS- CoV	Strain P9	10 ^s	RT	4 d	[<u>25</u>]		
	SARS- CoV	Strain FFM1	107	RT	6 – 9 d	[28]		

https://www.journalofhospitalinfection.com/article/S0195-6701(20)30046-3/fulltext

	HCoV	Strain 229E	10^{7}	RT	2-6 d	[28]
PVC	HCoV	Strain 229E	10^{3}	21°C	5 d	[<u>23</u>]
Silicon rubber	HCoV	Strain 229E	10^{3}	21°C	5 d	[23]
Surgical glove (latex)	HCoV	Strains 229E and OC43	5 x 10 ³	21°C	≤ 8 h	[24]
Disposable gown	SARS- CoV	Strain GVU6109	106	RT	2 d	[<u>26</u>]
gown	gown Cov		105		24 h	
			10^{4}		1 h	
Ceramic	HCoV	Strain 229E	10^{3}	21°C	5 d	[<u>23</u>]
Teflon	HCoV	Strain 229E	103	21°C	5 d	[23]

View Table in HTML

MERS = Middle East Respiratory Syndrome; HCoV = human coronavirus; TGEV = transmissible gastroenteritis virus; MHV = mouse hepatitis virus; SARS = Severe Acute Respiratory Syndrome; RT = room temperature.

Inactivation of coronaviruses by biocidal agents in suspension tests

Ethanol (78-95%), 2-propanol (70-100%), the combination of 45% 2-propanol with 30% 1-propanol, glutardialdehyde (0.5-2.5%), formaldehyde (0.7-1%) and povidone iodine (0.23-7.5%) readily inactivated coronavirus infectivity by approximately 4 log₁₀ or more. (<u>Table 2</u>). Sodium hypochlorite required a minimal concentration of at least 0.21% to be effective. Hydrogen peroxide was effective with a concentration of 0.5% and an incubation time of 1 min. Data obtained with benzalkonium chloride at reasonable contact times were conflicting. Within 10 min a concentration of 0.2% revealed no efficacy against coronavirus whereas a concentration of 0.05% was quite effective. 0.02% chlorhexidine digluconate was basically ineffective (<u>Table 2</u>).

Table 2Inactivation of coronaviruses by different types of biocidal agents in suspension tests.

Biocidal agent	Concentration	Virus	Strain/isolate	Exposure time	Reduction of viral infectivity (log ₁₀)	Reference
Ethanol	95%	SARS- CoV	Isolate FFM-1	30 s	≥ 5.5	[29]
	85%		Isolate FFM-1	30 s	≥ 5.5	[29]
	80%	SARS- CoV	Isolate FFM-1	30 s	≥ 4.3	[<u>29</u>]
		SARS-	Strain EMC	30 s	> 4.0	[14]
	78%	CoV	Isolate FFM-1	30 s	≥ 5.0	[28]
	70%	MERS- CoV	Strains MHV-2 and	10 min	> 3.9	[<u>30</u>]
	70%	SARS-	MHV-N	10 min	> 3.3	[<u>30</u>]

2-Propanol	100%	CoV MHV CCV SARS- CoV	Strain I-71 Isolate FFM-1	30 s	≥ 3.3	[28]
	75% 75% 70% 50%	SARS-CoV MERS-CoV SARS-CoV MHV	Isolate FFM-1 Strain EMC Isolate FFM-1 Strains MHV-2 and MHV-N Strain I-71	30 s 30 s 30 s 10 min 10 min	≥ 4.0 ≥ 4.0 ≥ 3.3 > 3.7 > 3.7	[14] [14] [28] [30] [30]
2-Propanol and 1-propanol	45% and 30%	SARS- CoV SARS- CoV	Isolate FFM-1 Isolate FFM-1	30 s 30 s	≥ 4.3 ≥ 2.8	[<u>29</u>] [<u>28</u>]
Benzalkonium chloride Didecyldimethyl ammonium	0.2% 0.05% 0.05% 0.00175%	HCoV MHV CCV CCV	ATCC VR-759 (strain OC43) Strains MHV-2 and MHV-N Strain I-71 Strain S378	10 min 10 min 10 min 3 d	0.0 > 3.7 > 3.7 3.0	[31] [30] [30] [32]
chloride Chlorhexidine digluconate	0.02% 0.02%	MHV CCV	Strains MHV-2 and MHV-N Strain I-71	10 min 10 min	0.7 – 0.8 0.3	[<u>30</u>]
Sodium hypochlorite	0.21% 0.01% 0.01% 0.001% 0.001%	MHV MHV CCV MHV CCV	Strain MHV-1 Strains MHV-2 and MHV-N Strain I-71 Strains MHV-2 and MHV-N Strain I-71	30 s 10 min 10 min 10 min 10 min	≥ 4.0 2.3 - 2.8 1.1 0.3 - 0.6 0.9	[33] [30] [30] [30] [30]
Hydrogen peroxide	0.5%	HCoV	Strain 229E	1 min	> 4.0	[34]
Formaldehyde	1% 0.7% 0.7%	SARS- CoV SARS- CoV	Isolate FFM-1 Isolate FFM-1 Strain I-71	2 min 2 min 10 min	> 3.0 > 3.0 > 3.5	[28] [28] [30]

https://www.journalofhospitalinfection.com/article/S0195-6701(20)30046-3/fulltext

			7 di cicic/30133 07			
	0.7%	MHV		10 min	> 3.7	[<u>30</u>]
	0.009%	CCV		24 h	> 4.0	[<u>35</u>]
		CCV				
Glutardialdehyde	2.5%	SARS- CoV	Hanoi strain	5 min	> 4.0	[<u>36</u>]
	0.5%	SARS- CoV	Isolate FFM-1	2 min	> 4.0	[28]
Povidone iodine	7.5%	MERS- CoV	Isolate HCoV- EMC/2012	15 s	4.6	[37]
	4%	MERS- CoV	Isolate HCoV-	15 s	5.0	[<u>37</u>]
	1%		EMC/2012	1 min	> 4.0	[<u>36</u>]
	CoV 0.47%	SARS- CoV	Hanoi strain	15 s	4.3	[<u>37</u>]
		0.47%	MERS-	Isolate HCoV- EMC/2012	1 min	3.8
	0.25%).25% CoV).23% SARS-	Hanoi strain	1 min	> 4.0	[<u>36</u>]
	0.23%			1 min	> 4.0	[<u>36</u>]
	0.23%	SARS-	15 s	15 s	≥ 4.4	[38]
	0.23% CoV SARS- CoV	Isolate FFM-1	15 s	≥ 4.4	[38]	
			Isolate HCoV- EMC/2012			
			22012			
		MERS- CoV				

View Table in HTML

agent

ration

SARS = Severe Acute Respiratory Syndrome; MERS = Middle East Respiratory Syndrome; MHV = mouse hepatitis virus; CCV = canine coronavirus; HCoV = human coronavirus.

Jump to Section

▼

Inactivation of coronaviruses by biocidal agents in carrier tests

olate

us

Ethanol at concentrations between 62% and 71% reduced coronavirus infectivity within 1 min exposure time by $3.0-4.0 \log_{10}$. Concentrations of 0.1- 0.5% sodium hypochlorite and 2% glutardialdehyde were also quite effective with > $3.0 \log_{10}$ reduction in viral titre. In contrast, 0.04% benzalkonium chloride, 0.06% sodium hypochlorite and 0.55% ortho-phtalaldehyde were less effective (<u>Table 3</u>).

Table 3Inactivation of coronaviruses by different types of biocidal agents in carrier tests.									
Biocidal	Concent	Vir	Strain/is	Volume/m	Orga nic	Expo sure	Reduc tion of viral	Refer	

aterial

load

time

infecti

ence

https://www.journalofhospitalinfection.com/article/S0195-6701(20)30046-3/fulltext

							vity (log ₁₀)	
Ethanol	71%	TGE	Unknown	50 μl/stainless	None	1 min	3.5	[<u>39</u>]
	71%		steel	None	1 min	2.0	[<u>39</u>]	
	70%	MH V	Unknown	50 μl/stainless steel	None	1 min	3.2	[<u>39</u>]
	70%	TGE V	Unknown	50 μl/stainless steel	None	1 min	3.9	[<u>39</u>]
	70%	MH	Strain 229E	50 μl/stainless	5% serum	1 min	> 3.0	[<u>40</u>]
	62%	V	Unknown	steel	None	1 min	4.0	[<u>39</u>]
	62%	HCo V	Unknown	20 µl/stainless steel	None	1 min	2.7	[<u>39</u>]
		TGE V		50 μl/stainless steel				
		MH V		50 μl/stainless steel				
Benzalkonium chloride	0.04%	HCo V	Strain 229E	20 μl/stainless steel	5% serum	1 min	< 3.0	[<u>40</u>]
Sodium hypochlorite	0.5%	HCo V	Strain 229E	20 μl/stainless steel	5% serum	1 min	> 3.0	[<u>40</u>]
	0.1%	HCo	Strain 229E	20 μl/stainless	5%	1 min	> 3.0	[<u>40</u>]
	0.06%	V	Unknown	steel	serum None	1 min	0.4	[<u>39</u>]
	0.06%	TGE V	Unknown	50 μl/stainless steel	None	1 min	0.6	[<u>39</u>]
	0.01%	MH V	Strain 229E	50 μl/stainless steel	5% serum	1 min	< 3.0	[<u>40</u>]
		HCo V		20 μl/stainless steel				
Glutardialdeh yde	2%	HCo V	Strain 229E	20 μl/stainless steel	5% serum	1 min	> 3.0	[<u>40</u>]
Ortho-	0.55%	TGE	Unknown	50 μl/stainless	None	1 min	2.3	[<u>39</u>]
phtalaldehyde	0.55%	V MH V	Unknown	steel 50 μl/stainless steel	None	1 min	1.7	[<u>39</u>]
Hydrogen peroxide	Vapor of unknown concentration	TGE V	Purdue strain type 1	20 μl/stainless steel	None	2 – 3 h	4.9 – 5.3*	[<u>41</u>]

View Table in HTML

 $TGEV = transmissible \ gastroenteritis \ virus; \ MHV = mouse \ hepatitis \ virus; \ HCoV = human \ coronavirus;$

*depending on the volume of injected hydrogen peroxide.

Discussion

https://www.journalofhospitalinfection.com/article/S0195-6701(20)30046-3/fulltext

Human coronaviruses can remain infectious on inanimate surfaces at room temperature for up to 9 days. At a temperature of 30°C or more the duration of persistence is shorter. Veterinary coronaviruses have been shown to persist even longer for 28 d. Contamination of frequent touch surfaces in healthcare settings are therefore a potential source of viral transmission. Data on the transmissibility of coronaviruses from contaminated surfaces to hands were not found. However, it could be shown with influenza A virus that a contact of 5 s can transfer 31.6% of the viral load to the hands [9]. The transfer efficiency was lower (1.5%) with parainfluenza virus 3 and a 5 s contact between the surface and the hands [10]. In an observational study, it was described that students touch their face with their own hands on average 23 times per h, with contact mostly to the skin (56%), followed by mouth (36%), nose (31%) and eyes (31%) [11]. Although the viral load of coronaviruses on inanimate surfaces is not known during an outbreak situation it seem plausible to reduce the viral load on surfaces by disinfection, especially of frequently touched surfaces in the immediate patient surrounding where the highest viral load can be expected. The WHO recommends "to ensure that environmental cleaning and disinfection procedures are followed consistently and correctly. Thoroughly cleaning environmental surfaces with water and detergent and applying commonly used hospital-level disinfectants (such as sodium hypochlorite) are effective and sufficient procedures." [12] The typical use of bleach is at a dilution of 1:100 of 5% sodium hypochlorite resulting in a final concentration of 0.05% [13]. Our summarized data with coronaviruses suggest that a concentration of 0.1% is effective in 1 min (Table 3). That is why it seems appropriate to recommend a dilution 1:50 of standard bleach in the coronavirus setting. For the disinfection of small surfaces ethanol (62-71%; carrier tests) revealed a similar efficacy against coronavirus. A concentration of 70% ethanol is also recommended by the WHO for disinfecting small surfaces [13].

No data were found to describe the frequency of hands becoming contaminated with coronavirus, or the viral load on hands either, after patient contact or after touching contaminated surfaces. The WHO recommends to preferably apply alcohol-based hand rubs for the decontamination of hands, e.g. after removing gloves. Two WHO recommended formulations (based on 80% ethanol or 75% 2-propanol) have been evaluated in suspension tests against SARS-CoV and MERS-CoV, and both were described to be very effective [14]. No in vitro data were found on the efficacy of hand washing against coronavirus contaminations on hands. In Taiwan, however, it was described that installing hand wash stations in the emergency department was the only infection control measure which was significantly associated with the protection from healthcare workers from acquiring the SARS-CoV, indicating that hand hygiene can have a protective effect [15]. Compliance with hand hygiene can be significantly higher in an outbreak situation but is likely to remain an obstacle especially among physicians [16, 17, 18]. Transmission in healthcare settings can be successfully prevented when appropriate measures are consistently performed [19, 20].

Jump to Section	_

Conclusions

https://www.journalofhospitalinfection.com/article/S0195-6701(20)30046-3/fulltext

Human coronaviruses can remain infectious on inanimate surfaces for up to 9 days. Surface disinfection with 0.1% sodium hypochlorite or 62-71% ethanol significantly reduces coronavirus infectivity on surfaces within 1 min exposure time. We expect a similar effect against the 2019-nCoV.

		Jump to Section ▼
		Declaration of Competing Interest
		None.
		None.
		Jump to Section ▼
		References
	1.	WHO. Novel Coronavirus (2019-nCoV). Situation Report 9.: WHO 2020.
	2.	de Wit, E., van Doremalen, N., Falzarano, D., and Munster, V.J. SARS and MERS: recent insights into emerging coronaviruses. <i>Nature Reviews Microbiology.</i> 2016; 14: 523–534
	0	View in Article
	0	Google Scholar
	3.	Chan, J.F., Yuan, S., Kok, K.H., To, K.K., Chu, H., Yang, J. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. <i>Lancet.</i> 2020; https://doi.org/10.1016/s0140-6736(20)30154-9
	0	<u>View in Article</u>
	0	Google Scholar
	4.	Otter, J.A., Donskey, C., Yezli, S., Douthwaite, S., Goldenberg, S.D., and Weber, D.J. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. <i>J Hosp Infect</i> . 2016; 92: 235–250
	0	View in Article
	0	Google Scholar
	5.	Dowell, S.F., Simmerman, J.M., Erdman, D.D., Wu, J.S., Chaovavanich, A., Javadi, M. et al. Severe acute respiratory syndrome coronavirus on hospital surfaces. <i>Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America</i> . 2004; 39: 652–657
	0	View in Article
	0	Google Scholar
	6.	Geller, C., Varbanov, M., and Duval, R.E. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. <i>Viruses.</i> 2012; 4: 3044–3068
	0	View in Article
		<u>I</u>
	0	Google Scholar
	7.	Kampf G. Antiseptic Stewardship: Biocide Resistance and Clinical Implications, Cham: Springer International Publishing 2018.
	8.	ljaz, M.K., Brunner, A.H., Sattar, S.A., Nair, R.C., and Johnson-Lussenburg, C.M. Survival characteristics of airborne human coronavirus 229E. <i>The Journal of General Virology.</i> 1985; 66: 2743–2748
	0	View in Article

- https://www.journalofhospitalinfection.com/article/S0195-6701(20)30046-3/fulltext Google Scholar 0 9. Bean, B., Moore, B.M., Sterner, B., Peterson, L.R., Gerding, D.N., and Balfour, H.H. Survival of influenza viruses an environmental surfaces. The Journal of Infectious Diseases. 1982; 146: 47-51 View in Article Google Scholar \circ 10. Ansari, S.A., Springthorpe, V.S., Sattar, S.A., Rivard, S., and Rahman, M. Potential role of hands in the spread of respiratory viral infections: studies with human parainfluenza virus 3 and rhinovirus 14. J Clin Microbiol. 1991; 29: 2115-2119 View in Article Google Scholar 11. Kwok, Y.L., Gralton, J., and McLaws, M.L. Face touching: a frequent habit that has implications for hand hygiene. Am J Infect Control. 2015; 43: 112-114 View in Article Google Scholar 12. WHO. Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected. Interim guidance. 25 January 2020. WHO 2020. 13. WHO. Annex G. Use of disinfectants: alcohol and bleach. Infection prevention and control of epidemic-and pandemic-prone acute respiratory infections in health care Geneva: WHO 2014; 65-66. 14. Siddharta, A., Pfaender, S., Vielle, N.J., Dijkman, R., Friesland, M., Becker, B. et al. Virucidal Activity of World Health Organization-Recommended Formulations Against Enveloped Viruses, Including Zika, Ebola, and Emerging Coronaviruses. J Infect Dis. 2017; 215: 902–906 View in Article Google Scholar 15. Yen, M.Y., Lu, Y.C., Huang, P.H., Chen, C.M., Chen, Y.C., and Lin, Y.E. Quantitative evaluation of infection control models in the prevention of nosocomial transmission of SARS virus to healthcare workers: implication to nosocomial viral infection control for healthcare workers. Scandinavian Journal of Infectious Diseases. 2010; 42: 510-515 View in Article Google Scholar 16. Alshammari M, Reynolds KA, Verhougstraete M, O'Rourke MK. Comparison of Perceived and Observed Hand Hygiene Compliance in Healthcare Workers in MERS-CoV Endemic Regions. Healthcare (Basel, Switzerland) 2018; 6. 17. Al-Tawfig, J.A., Abdrabalnabi, R., Taher, A., Mathew, S., and Rahman, K.A. Infection control influence of Middle East respiratory syndrome coronavirus: A hospital-based analysis. Am J Infect Control. 2019; 47: 431-434 View in Article
 - Google Scholar
 - 18. Wong, T.W. and Tam, W.W. Handwashing practice and the use of personal protective equipment among medical students after the SARS epidemic in Hong Kong. *Am J Infect Control.* 2005; 33: 580–586
 - o <u>View in Article</u>

0	Google Scholar	
19.	Wiboonchutikul, S., Manosuthi, W., Likanonsakul, S., Sangsajja, C., Kongsanan, P., Nitiyanontakij, R. et al. Lack of transmission among healthcare workers in contact with a case of Middle East respiratory syndrome coronavirus infection in Thailand. <i>Antimicrob Resist Infect Control</i> . 2016; 5: 21	
0	View in Article	
0	Google Scholar	
20.	Ki, H.K., Han, S.K., Son, J.S., and Park, S.O. Risk of transmission via medical employees and importance of routine infection-prevention policy in a nosocomial outbreak of Middle East respiratory syndrome (MERS): a descriptive analysis from a tertiary care hospital in South Korea. <i>BMC Pulmonary Medicine</i> . 2019; 19: 190	ŕ
0	View in Article	
0	Google Scholar	
21.	van Doremalen, N., Bushmaker, T., and Munster, V.J. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. <i>Euro Surveill.</i> 2013; 18	
0	View in Article	
0	Google Scholar	
22.	Casanova, L.M., Jeon, S., Rutala, W.A., Weber, D.J., and Sobsey, M.D. Effects of air temperature and relative humidity on coronavirus survival on surfaces. <i>Appl Environ Microbiol.</i> 2010; 76: 2712–2717	
0	View in Article	
0	Google Scholar	
23.	Warnes, S.L., Little, Z.R., and Keevil, C.W. Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials. (e01697-15) <i>mBio.</i> 2015; 6	
0	View in Article	
0	Google Scholar	
24.	Sizun, J., Yu, M.W., and Talbot, P.J. Survival of human coronaviruses 229E and OC43 in suspension and after drying on surfaces: a possible source of hospital-acquired infections. <i>Journal of Hospital Infection</i> . 2000; 46: 55–60	
0	View in Article	
0	Google Scholar	
25.	Duan, S.M., Zhao, X.S., Wen, R.F., Huang, J.J., Pi, G.H., Zhang, S.X. et al. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. <i>Biomedical and Environmental Sciences</i> . 2003; 16: 246–255	
0	View in Article	
0	Google Scholar	
26.	Lai, M.Y., Cheng, P.K., and Lim, W.W. Survival of severe acute respiratory syndrome coronavirus. <i>Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America.</i> 2005; 41: e67–71	
0	View in Article	

0	Google Scholar
27.	Chan, K.H., Peiris, J.S., Lam, S.Y., Poon, L.L., Yuen, K.Y., and Seto, W.H. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. <i>Advances in Virology.</i> 2011; 2011: 734690
0	View in Article
0	Google Scholar
28.	Rabenau, H.F., Cinatl, J., Morgenstern, B., Bauer, G., Preiser, W., and Doerr, H.W. Stability and inactivation of SARS coronavirus . <i>Med Microbiol Immunol</i> . 2005; 194: 1–6
0	View in Article
0	Google Scholar
29.	Rabenau, H.F., Kampf, G., Cinatl, J., and Doerr, H.W. Efficacy of various disinfectants against SARS coronavirus. <i>J Hosp Infect.</i> 2005; 61: 107–111
0	View in Article
0	Google Scholar
30.	Saknimit, M., Inatsuki, I., Sugiyama, Y., and Yagami, K. Virucidal efficacy of physico-chemical treatments against coronaviruses and parvoviruses of laboratory animals. <i>Jikken Dobutsu Experimental Animals</i> . 1988; 37: 341–345
0	<u>View in Article</u>
0	Google Scholar
31.	Wood, A. and Payne, D. The action of three antiseptics/disinfectants against enveloped and non-enveloped viruses. <i>J Hosp Infect</i> . 1998; 38: 283–295
0	View in Article
0	Google Scholar
32.	Pratelli, A. Action of disinfectants on canine coronavirus replication in vitro. <i>Zoonoses and Public Health.</i> 2007; 54: 383–386
0	View in Article
0	Google Scholar
33.	Dellanno, C., Vega, Q., and Boesenberg, D. The antiviral action of common household disinfectants and antiseptics against murine hepatitis virus, a potential surrogate for SARS coronavirus. <i>Am J Infect Control.</i> 2009; 37: 649–652
0	View in Article
0	Google Scholar
34.	Omidbakhsh, N. and Sattar, S.A. Broad-spectrum microbicidal activity, toxicologic assessment, and materials compatibility of a new generation of accelerated hydrogen peroxide-based environmental surface disinfectant. <i>Am J Infect Control.</i> 2006; 34: 251–257
0	View in Article
0	Google Scholar

35.	Pratelli, A. Canine coronavirus inactivation with physical and chemical agents. <i>Veterinary Journal (London, England : 1997).</i> 2008; 177: 71–79
0	View in Article
0	Google Scholar
36.	Kariwa, H., Fujii, N., and Takashima, I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. <i>Dermatology (Basel, Switzerland).</i> 2006; 212: 119–123
0	View in Article
0	Google Scholar
37.	Eggers, M., Eickmann, M., and Zorn, J. Rapid and Effective Virucidal Activity of Povidone-Iodine Products Against Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and Modified Vaccinia Virus Ankara (MVA). Infectious Diseases and Therapy. 2015; 4: 491–501
0	View in Article
0	Google Scholar
38.	Eggers, M., Koburger-Janssen, T., Eickmann, M., and Zorn, J. Vitro Bactericidal and Virucidal Efficacy of Povidone-Iodine Gargle/Mouthwash Against Respiratory and Oral Tract Pathogens. <i>Infectious Diseases and Therapy.</i> 2018; 7: 249–259
0	View in Article
0	Google Scholar
39.	Hulkower, R.L., Casanova, L.M., Rutala, W.A., Weber, D.J., and Sobsey, M.D. Inactivation of surrogate coronaviruses on hard surfaces by health care germicides. <i>Am J Infect Control.</i> 2011; 39: 401–407
0	View in Article
0	Google Scholar
40.	Sattar, S.A., Springthorpe, V.S., Karim, Y., and Loro, P. Chemical disinfection of non-porous inanimate surfaces experimentally contaminated with four human pathogenic viruses. <i>Epidemiology and Infection</i> . 1989; 102: 493–505
0	View in Article
0	Google Scholar
41.	Goyal, S.M., Chander, Y., Yezli, S., and Otter, J.A. Evaluating the virucidal efficacy of hydrogen peroxide vapour. <i>J Hosp Infect.</i> 2014; 86: 255–259
0	View in Article
0	Google Scholar
	© 2020 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.